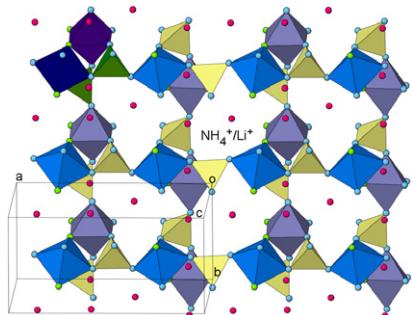

CONTENTS

Abstracted/indexed in BioEngineering Abstracts, Chemical Abstracts, Coal Abstracts, Current Contents/Physics, Chemical, & Earth Sciences, Engineering Index, Research Alert, SCISEARCH, Science Abstracts, and Science Citation Index. Also covered in the abstract and citation database SCOPUS®. Full text available on ScienceDirect®.

Regular Articles
Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO₂/SiO₂ multilayered microspheres

Yong Yang, Yuming Zhou, Jianhua Ge, Yongjuan Wang and Yunxia Zhu

page 2617

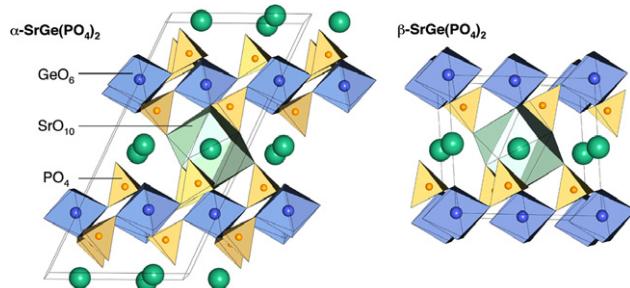


Optically active polyurethane/titania/silica (LPU/TiO₂/SiO₂) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting.

Mild hydrothermal synthesis, crystal structure, thermal behaviour, spectroscopic and magnetic properties of (NH₄)_{0.80}Li_{0.20}[Fe(AsO₄)F]

Teresa Berrocal, José L. Mesa, Edurne S. Larrea, Begoña Bazán, José L. Pizarro, Luis Lezama, Teófilo Rojo and María I. Arriortua

page 2623

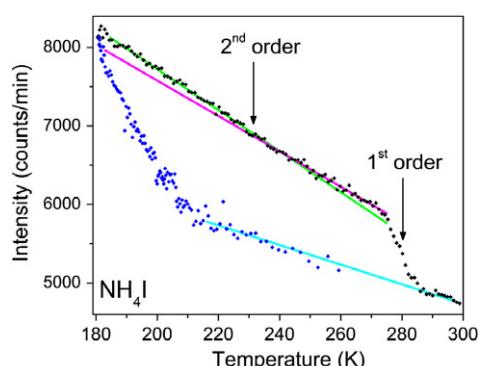


Three-dimensional structure of (NH₄)_{0.80}Li_{0.20}[Fe(AsO₄)F], a fluoroarsenate containing lithium and ammonium in the structural cavities.

Regular Articles—Continued
***M*^{II}Ge(PO₄)₂ (*M*=Ca, Sr, Ba): Crystal structure, phase transitions and thermal expansion**

Karin Popa, Gilles Wallez, Damien Bregiroux and Pascal Loiseau

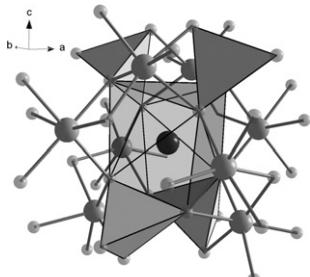
page 2629



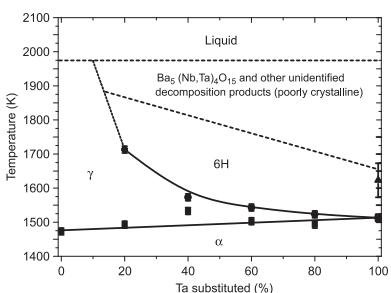
The superstructure of SrGe(PO₄)₂ at room temperature () results from the off-centering of cation Sr^{II}.

Detection of dynamical transitions in hydrogenous materials using transmission measurements with very cold neutrons

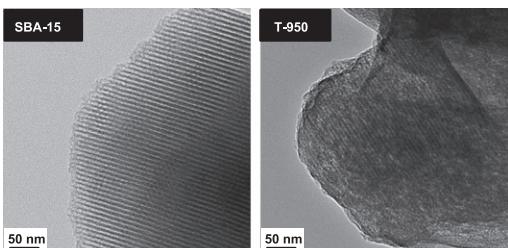
Nina Verdal, Terrence J. Udovic, John R.D. Copley and John J. Rush


page 2635

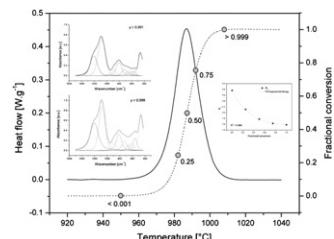
The transmission of very long wavelength neutrons is a highly sensitive probe of dynamical transitions in hydrogenous materials.


Continued

New phases in the system LiMnVO_4 – $\text{Mn}_3(\text{VO}_4)_2$
 Oliver Clemens, Robert Haberkorn and
 Horst Philipp Beck
 page 2640


The unusual coordination of Mn in the form of a stella quadrangula with the surrounding vanadate groups.

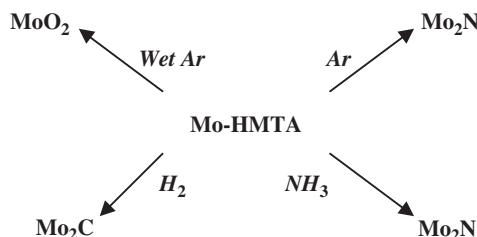
Phase diagram, chemical stability and physical properties of the solid-solution $\text{Ba}_4\text{Nb}_{2-x}\text{Ta}_x\text{O}_9$
 Matthew T. Dunstan, Peter D. Sounthon, Cameron J. Kepert, James Hester, Justin A. Kimpton and Chris D. Ling
 page 2648


Thermodynamic phase diagram of $\text{Ba}_4\text{Nb}_{2-x}\text{Ta}_x\text{O}_9$.

Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors
 Seul-Yi Lee and Soo-Jin Park
 page 2655

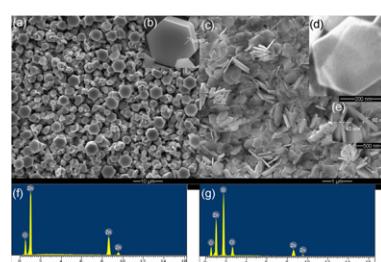
It is described that the considerable long-range ordering and the presence of mono-dimensional aligned channels between the two aligned nanorods of the porous framework from the SBA-15 was retained in the T-950 sample during the carbonization process.

Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin
 Petr Ptáček, František Šoukal, Tomáš Opravil, Magdaléna Nosková, Jaromír Havlica and Jiří Brandstetr
 page 2661



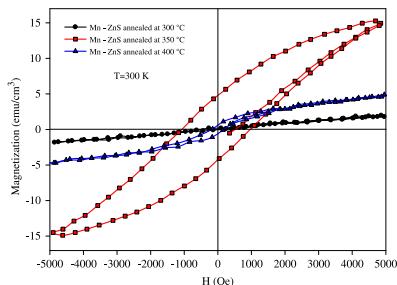
The thermal conversion of metakaolinite into spinel phase was investigated by mid-infrared spectroscopy to found relationship between bands features and fractional conversion.

Decomposition of molybdate–hexamethylenetetramine complex: One single source route for different catalytic materials


Sandra Chouzier, Tivadar Czeri, Magalie Roy-Auberger, Christophe Pichon, Christophe Geantet, Michel Vrinat and Pavel Afanasiev

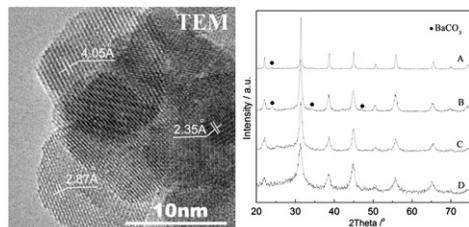
page 2668

Depending on the conditions, decomposition of molybdate–HMTA complex yields highly dispersed molybdenum nitride, carbide or oxide.


Growth and characterization of Cl-doped ZnO hexagonal nanodisks
 Ramin Yousefi, A.K. Zak and M.R. Mahmoudian
 page 2678

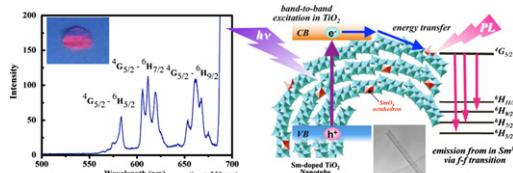
Cl-doped ZnO nanodisks and undoped ZnO microdisks have been grown using a thermal evaporation method.

The influence of diffusion temperature on the structural, optical and magnetic properties of manganese-doped zinc oxysulfide thin films


İ. Polat, S. Aksu, M. Altunbaş, S. Yılmaz and E. Bacaksız
page 2683

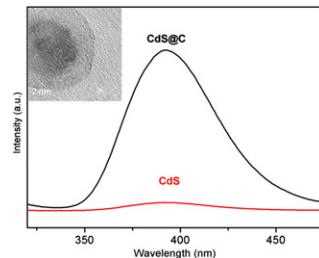
M–H variation of Mn diffusion-doped Zn(O,S) thin films measured at 300 K.

Grain size modulation on BaTiO₃ nanoparticles synthesized at room temperature


Jian Quan Qi, Li Sun, Xi Wei Qi, Yu Wang and Helen Lai Wah Chan
page 2690

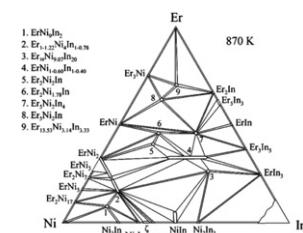
This paper offers a direct facile approach to BaTiO₃ nanoparticles at room temperature with a large quantity. The grain size can be modulated purposefully.

Photoluminescence of samarium-doped TiO₂ nanotubes


Dong Jin Park, Tohru Sekino, Satoshi Tsukuda, Asuka Hayashi, Takafumi Kusunose and Shun-Ichiro Tanaka
page 2695

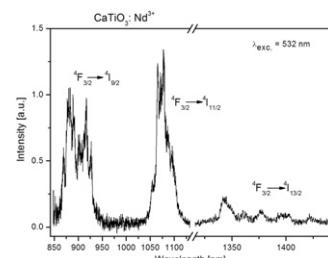
Samarium-doped TiO₂ nanotubes (TNTs) having a nanotubular structure were synthesized by soft chemical route. It was revealed that the energy associated by the band-to-band excitation of TNT matrix transferred to the doped Sm³⁺ ions in the lattice, resulting in emission of strong and visible red fluorescence.

An improved pyrolysis route to synthesize carbon-coated CdS quantum dots with fluorescence enhancement effect


Kejie Zhang and Xiaoheng Liu
page 2701

We demonstrated a facile approach to synthesize well-dispersed carbon-coated CdS quantum dots. The as-prepared nanoparticles presented remarkable fluorescence enhancement effect.

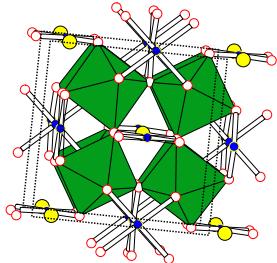
Ternary system Er–Ni–In at *T* = 870 K


M. Dzevenko, Yu. Tyvanchuk, L. Bratash, V. Zaremba, L. Havela and Ya. Kalychak
page 2707

Phase relations in the ternary system Er–Ni–In have been established for the isothermal section at *T* = 870 K based on X-ray phase and EDX-analyses. Nine ternary compounds were observed.

Spectroscopic properties of Nd³⁺ ions in nano-perovskite CaTiO₃

K. Lemański, A. Gągor, M. Kurnatowska, R. Pązik and P.J. Dereń
page 2713

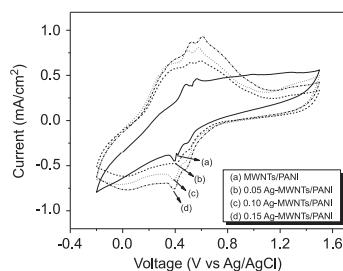

The 300 K emission spectrum of CaTiO₃: 1% Nd³⁺ annealed at 700 °C and measured at 300 K on InGaAs detector.

Continued

Synthesis and microstructural TEM investigation of $\text{CaCu}_3\text{Ru}_4\text{O}_{12}$ ceramic and thin film

Virginie Brizé, Cécile Autret-Lambert, Jérôme Wolfman, Monique Gervais and François Gervais

page 2719

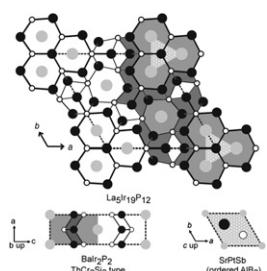


Structure of $\text{CaCu}_3\text{Ru}_4\text{O}_{12}$ showing the RuO_6 octahedra and the square planar environment for Cu^{2+} .

Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes

Ki-Seok Kim and Soo-Jin Park

page 2724

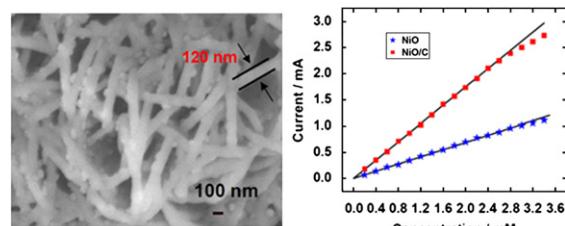


The current density of MWNTs/PANI increased with increasing the Ag concentration due to the bridge effect of Ag nanoparticles incorporated between MWNTs and PANI.

Metal-rich phosphides $RE_5\text{Ir}_{19}\text{P}_{12}$ with $\text{Sc}_5\text{Co}_{19}\text{P}_{12}$ type structure

Ulrike Pfannenschmidt, Ute Ch. Rodewald, Rolf-Dieter Hoffmann and Rainer Pöttgen

page 2731

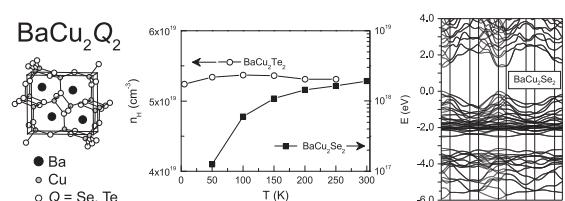


The intergrowth structure $\text{La}_5\text{Ir}_{19}\text{P}_{12}$.

Preparation of nickel oxide and carbon nanosheet array and its application in glucose sensing

Xin Li, Anzheng Hu, Jian Jiang, Ruimin Ding, Jinping Liu and Xintang Huang

page 2738

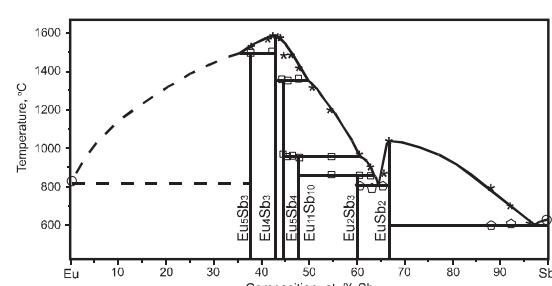


The thickness of nanosheets is about 90–120 nm. They are decorated with small particles. In glucose sensing, NiO and carbon composite exhibits higher response current than pure NiO.

Transport and optical properties of heavily hole-doped semiconductors BaCu_2Se_2 and BaCu_2Te_2

Michael A. McGuire, Andrew F. May, David J. Singh, Mao-Hua Du and Gerald E. Jellison

page 2744

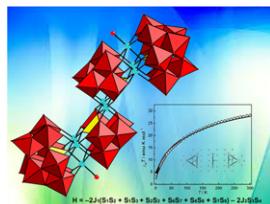


Combined experimental and theoretical study of orthorhombic BaCu_2Se_2 and BaCu_2Te_2 to assess potential for photovoltaic and thermoelectric applications.

Phase equilibrium and intermediate phases in the Eu–Sb system

M.N. Abdusalyamova and I.G. Vasilyeva

page 2751

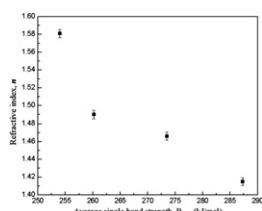


The high-temperature range of the T – x phase diagram for the Eu–Sb system.

Synthesis, structure and magnetism of a S-shaped multi-iron substituted arsenotungstate containing a trivacant Keggin $[B-\alpha\text{-As}^{\text{V}}\text{W}_9\text{O}_{34}]^{9-}$ and a hexavacant Keggin $[\alpha\text{-As}^{\text{V}}\text{W}_6\text{O}_{26}]^{11-}$ fragments

Junwei Zhao, Qiuxia Han, Dongying Shi, Lijuan Chen, Pengtao Ma, Jingping Wang and Jingyang Niu

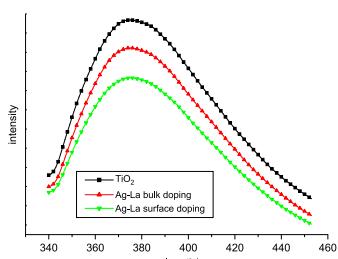
page 2756



S-shaped multi-iron substituted arsenotungstate consisting of two asymmetric sandwich-type subunits has been hydrothermally synthesized and structurally characterized. Its magnetic properties have been investigated.

Role of oxygen on the optical properties of borate glass doped with ZnO

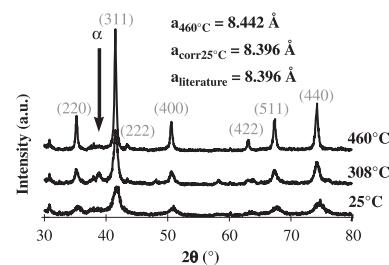
Manal Abdel-Baki and Fouad El-Diasty


page 2762

$\text{O}1s$, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion $2p$ electron density, which increases refractive index of glasses.

Microstructures and photocatalytic properties of Ag^+ and La^{3+} surface codoped TiO_2 films prepared by sol-gel method

Nan Zhao, Ming-ming Yao, Fang Li and Fei-peng Lou
page 2770

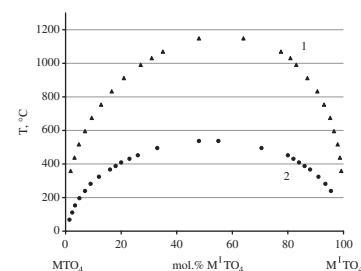


The PL intensity of Ag^+ and La^{3+} surface codoped TiO_2 was the lowest among all samples, indicating the recombination of electron and hole was effectively prohibited compared with pure TiO_2 , Ag^+ and La^{3+} bulk codoped TiO_2 .

Oxygen stoichiometry control of nanometric oxide compounds: The case of titanium ferrites

N. Millot and P. Perriat

page 2776

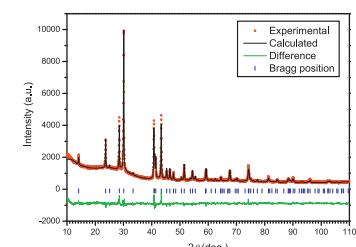


XRD patterns of $\text{Fe}_{3(1-\delta)}\text{O}_4$ nanometric powders obtained *in situ* during a reducing treatment. The stoichiometric compound was obtained by a thermal annealing at $460\text{ }^\circ\text{C}$ under $p\text{O}_2 = 3 \times 10^{-26}\text{ Pa}$ ($\Phi_{\text{DRX}} = 100\text{ nm}$). In inset, data of the experimental lattice parameter compared to the theoretical one. α represents the rhomboedrical phase which precipitates during this thermal treatment, then disappeared.

Analysis of solid solutions stability in scheelite-type molybdates and tungstates

V.D. Zhuravlev, O.G. Reznitskikh, Yu.A. Velikodnyi, T.A. Patrusheva and O.V. Sivtsova

page 2785

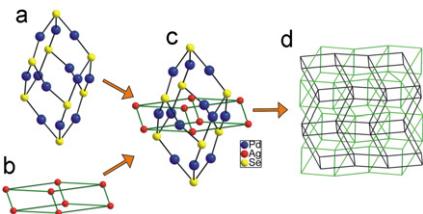


Calculated boundaries of solid solutions in $\text{BaWO}_4\text{-CaWO}_4$ (1) and $\text{PbMoO}_4\text{-CaMoO}_4$ (2) systems.

Superstructure and stacking faults in hydrothermal-grown $\text{KBe}_2\text{BO}_3\text{F}_2$ crystals

Jinqui Yu, Lijuan Liu, Shifeng Jin, Haitao Zhou, Xiaoling He, Changlong Zhang, Weining Zhou, Xiaoyang Wang, Xiaolong Chen and Chuangtian Chen

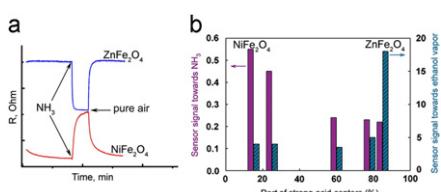
page 2790



A new structure of the $\bar{R}\bar{3}c$ space group with cell parameters of $a = 4.422(1)\text{ \AA}$ and $c = 37.524(3)\text{ \AA}$ was obtained from hydrothermal-grown $\text{KBe}_2\text{BO}_3\text{F}_2$ crystals by powder XRD and Rietveld refinement.

Continued

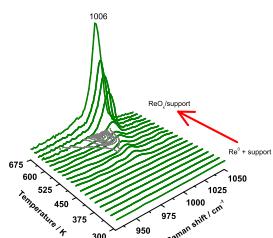
Crystal and electronic structure study of AgPd₃Se


F. Laufek, A. Vymazalová, D.A. Chareev, A.V. Kristavchuk, Q. Lin, J. Drahokoupil and T.M. Vasilchikova
page 2794

(a) Prolate rhombohedron formed by Pd and Se atoms, (b) oblate rhombohedron formed by Ag atoms and (c) their interpenetration at unit cell level. (d) 3D network of prolate and oblate rhombohedra.

Nanocrystalline ferrites Ni_xZn_{1-x}Fe₂O₄: Influence of cation distribution on acidic and gas sensing properties

A.P. Kazin, M.N. Rumyantseva, V.E. Prusakov, I.P. Suzdalev and A.M. Gaskov
page 2799

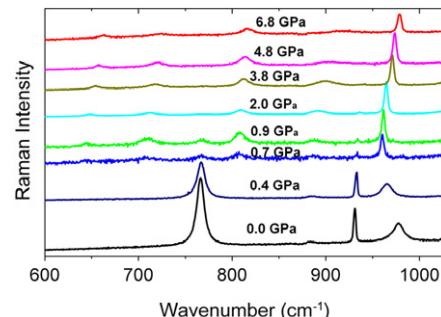


(a) *n*- and *p*-types change in electrical resistance and (b) sensor signal of Ni_xZn_{1-x}Fe₂O₄ towards NH₃ and ethanol vapor *vs.* the part of strong acid sites.

Supported oxorhenate catalysts prepared by thermal spreading of metal Re⁰ for methanol conversion to methylal

Xavier Sécordel, Anthony Yoboué, Sylvain Cristol, Christine Lancelot, Mickaël Capron, Jean-François Paul and Elise Berrier

page 2806

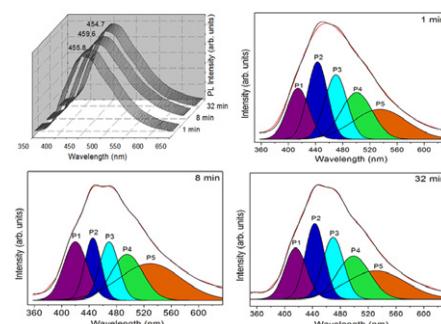


Evolution of the 900–1000 cm⁻¹ region of the Raman spectrum of a mixture of metal rhenium with anatase TiO₂ K03 upon heating in pure O₂.

Pressure-induced phase transitions in multiferroic

RbFe(MoO₄)₂—Raman scattering study

M. Mączka, M. Ptak, C. Luz-Lima, P.T.C. Freire, W. Paraguassu, S. Guerini and J. Hanuza
page 2812



Raman spectra of RbFe(MoO₄)₂ crystal in the high wavenumber region recorded at different pressures during compression experiment.

Formation of β -nickel hydroxide plate-like structures under mild conditions and their optical properties

A.P. de Moura, R.C. Lima, E.C. Paris, M.S. Li, J.A. Varela and E. Longo

page 2818

Nanostructural β -Ni(OH)₂ crystalline powders were prepared by rapid microwave-hydrothermal method for 1, 8 and 32 min. The hexagonal-shaped nanoplates obtained presented PL emission in the blue-green region and each decomposed component represents a different type of electronic transition, which can be linked to the structural arrangement or surface defects.

Language services. Authors who require information about language editing and copyediting services pre- and post-submission please visit <http://www.elsevier.com/locate/languagepolishing> or our customer support site at <http://epsupport.elsevier.com>. Please note Elsevier neither endorses nor takes responsibility for any products, goods or services offered by outside vendors through our services or in any advertising. For more information please refer to our Terms & Conditions <http://www.elsevier.com/termsandconditions>

For a full and complete Guide for Authors, please go to: <http://www.elsevier.com/locate/jssc>

Journal of Solid State Chemistry has no page charges.